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Fig. 7 Nondimensional pressure distribution on blade.

Test Results and Discussion

The experimental data show that the pressure distribution
on the blade suction and pressure sides is affected by the
presence of solid particles. Figures 4 and 5 show the pres-
sure distribution on the blade for the cases with and without
particles. These two figures represent a constant mean par-
ticle diameter d, = 50 u and for a constant particle concen-
tration @. The air mass flows are W, = 0.771 and 1.45 b/
sec, correspondingly.

It can be observed that the pressure distributions for flows
with particles are increased by a small amount with respect
to those corresponding to the particle free case. A comparison
of Figs. 4 and 5 indicates that the nondimensional pressure
distribution over the blades will rise with a corresponding in-
crease in Mach number or mass flow rate. This effect is in-
tensified as the Mach number increases. This is a conse-
quence of the rise in the level of turbulence, hence, an in-
crease in pressure. Figures 6 and 7 show the same general
trend for the case of d, = 300 u.

The pressure difference between flows with and without
particles remains nearly constant despite the decrease in the
concentration factor a and rise in the Mach number. Tt may
be concluded from these observations that the deviation in
pressure distribution is larger for a higher level of the concen-
tration «. This increase in a will result in a drop in gas mo-
mentum and more particle collisions. This is made apparent
by a rise in the pressure distribution.

The effect of a change in the particle material density p,
for different particle diameters d, is difficult to assess. The
reason for this is that it is necessary to use either the same
particle material but different diameters, or vice versa. These
requirements are difficult to meet because of the lack of a
commereial source for such particles. However, in order to
have some idea of the effect of changing d, and p,, a compari-
son can be made between Figs. 5 and 7. These data are for
the same concentration factor «, but with a sixfold increase in
d, from 50 to 300 u accompanied by a one-third drop in 5,
from 1.60 to 0.64 g/ecm3. It will be observed that there is a
slightly higher pressure rise in Fig. 7. This results from the
increased particle inertia because of the larger particle
diameters.

Conclusion

The measurements show that the particle sizes and con-
centrations change the pressure distribution along the cas-
cades and, consequently, effect the basic performance of the
turbine or compressor.
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A Correction for Compressible
Subsonic Planar Flow

Hreree NgrsTRUD*
Lockheed-Georgia Company, Marietta, Ga.

HE Prandtl-Glauert similarity rule describes the pres-

sure distribution on an airfoil in a compressible uniform
stream of Mach number M., in terms of the incompressible
pressure distribution by the well-known formula

Corg, = Cpif (L — M) 1)

where ¢p,; = Cpyr -0 designates the incompressible pressure
coefficient. This simple compressibility correction rule has
been extensively applied in aerodynamics and is of funda-
mental importance in linearized flow analysis. However, its
limitations for freestream Mach numbers approaching unity
are evident from Eq. (1). Another deficiency in adopting the
Prandtl-Glauert correction formula for high subsonie speeds
is because of its one dimensionality, which again precludes a
correct prediction of the pressure distribution at these speeds.
The present Note is concerned with an improvement over the
Prandtl-Glauert rule in the latter sense. A compressibility
correction formula will be given which is essentially a relation-
ship between local variables, but which can be understood as
being able to include some global effects.

The earliest improvements to the Prandtl-Glauert com-
pressibility rule came as a natural extension from the hodo-
graph theory of compressible flow. The Kérman-Tsien
formula® and the works of Ringleb? and Temple and Yarwood?
are examples of this development. Garrick and Kaplan* sub-
sequently gave a unified analysis of previous results and also
introduced some new relations. Krahn® arrives at his formula
by writing the incompressible velocity as the geometric mean
of the compressible velocity and the stream density. This
procedure, however, leads to an implicit expression for the
compressible pressure coefficient. The relation given by
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Fig. 1 Chordwise pressure distribution as obtained from
various compressibility correction formulas.
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Fig. 2 Chordwise pressure distribution as given by the
present analysis.

Laitone® does not have this drawback and is obtained by using
the local Mach number M rather than M, in Eq. (1). A
second-order compressibility rule is due to Van Dyke,” but is
only applicable to a particular class of airfoils as pointed out by
Imai? Finally, the recent work of Panchenkov?® should be
mentioned in which a pressure correction formula is obtained
from the transonic small disturbance equation.

The present analysis is also based on this nonlinear partial
differential equation which can be expressed as

a_u+ 1 [ 1 <u—uwbj
dr 1 — Moy 1/M.*—1 oz

)

U

Here the velocity components w,v are defined in a Cartesian
coordinate system «,y where & designates the direction of the
undisturbed flow. The flow is assumed inviseid and isen-
tropic, and Eq. (2) must be supplemented by the condition of
irrotationality

(ou/oy) — (dv/ox) = 0 ®3)

Now the integral equation approach of transonic flow will
be adopted to rewrite Eq. (2) to yield the integral formulation

1 (u—um2_ u—umD_‘_
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Here 8 = (1 — M.?)**is the Prandtl-factor and the subscript
1 designates the incompressible solution to the particular air-

foil problem. It will be further assumed that the perturba-

tion velocity in the integrand of Eq. (4) decays perpendicular
to the 2 axis according to the law (written for the upper half
plane By > 0):

we,+By) — uo _ ul®,+0) — uo [1 _ @J
U U T
0SBy <rr<<By<o=0 (5
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This implies that the perturbation velocity reduces linearly
from its maximum value at the profile boundary (taken as
the = axis) to zero at and beyond a distance y = r/8. The
parameter r = r(z) shall be defined with the aid of Eq. (3) as

1 <u¢(x) - um)
g"(x) Ueo

where g(z) designates the thickness distribution of the airfoil.

After substituting Eq. (5) in the double integral of Eq. (4),
an integration can be performed in the y direction. If one,
in addition, approximates the quadratic terms of the per-
turbation velocity with the corresponding Prandtl-Glauert
value, one obtains for the perturbation velocities on the z axis
the following expression:

u@) = o _ 1<fﬂ>—_uw>+
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The influence function £ = E(|z — £|;r) is evaluated!® as

E@ =E (L - x') = 7% {éln(l o)+

r

©)

r(z) =

z arctanz™! — 1}

The single integral in Eq. (7) can now for a given incompress-
ible velocity distribution be integrated (analytical or numeri-
cal) to yield the compressible solution. The associated pres-
sure coefficient is then caleulated by using the isentropic rela-
tion

2
M 2

Cp(.’l?) =

{[1 + é (e — 1)M 2 X

(-]

where »x designates the ratio of specific heats. However, in
order to express the compressible veloeity distribution in terms
involving only correction factors to the incompressible solu-
tlon, it is necessary to seek an approximate formulation for the
latter distribution. The simplest way to achieve this is to
represent the chordwise (0 < # < 1) distribution at each loca-
tion with a uniform value equal to the particular local value.
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Fig. 3 Chordwise distribution of profile curvature.
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The integral in Eq. (7) will then read

[W]Zﬂloﬂ“(lw — &linds =
1
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or be written in a series form,
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Equation (9), with the first two terms retained in the series
expansion, is substituted back in Eq. (7) and one obtains the
desired result,

u@) — uo _ 1 l:ui(x) - um] n
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Here r = r(z) is determined from Eq. (6) and the value for the
pressure coefficient ¢, can again be found from Eq. (8).

The compressibility rule described by Eqg. (10) will be
tested on a symmetrical blunt-nosed airfoil. The exact pres-
sure distribution for this airfoil at nearly critical freestream
Mach number is given in Ref. 11 together with geometric
profile data. These again have been utilized to calculate the
incompressible solution by using a mapping method which is
briefly described in Ref. 12.  Variocus compressibility corree-
tions were applied to the incompressible values, and the c¢b-
tained results are plotted together with the exact values in
Fig. 1. It can be seen that none of the applied correction
formulas can satisfactorily account for the global change of
the pressure distribution with increasing freestream Mach
number. This is not surprising since the correction factors
are constants based on the freestream condition only. For a
discussion of introducing the profile surface slope into the
correction factors, the reader is referred to the work of
Wilby.t3

In Fig. 2 the result of the present analysis as applied to the
same airfoil problem of Fig. 1 is given. Due to the additional
dependence on profile curvature (see Fig. 8), the compressibil-
ity correction defined by Eq. (10) yields reduced corrections
to the Prandtl-Glauert value at locations of large curvature,
e.g., at the nose region. This is the essential feature of the
present approach and it is viewed as an improvement over
other correction methods.
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Rapid Calculation of Inviscid and
Viscous Flow over Arbitrary

Shaped Bodies

H. A. Dwysgr,* E. D. Doss,T and A. GoLpmant
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Introduction

HE purpose of this Note is to show how the high Reynolds

number viscous and inviseid flow over arbitrary shaped
two-dimensional bodies, and in particular airfoils, can be
calculated very rapidly and exactly with a modern digital
computer. The calculations will only be carried out for the
high Reynolds number case, so that the boundary layer and
potential low approximations can be made. (This of course,
restricts the viscous flow caleulation to a region of flow in
front of the separation point.) Also, the results presented in
this paper will be limited to incompressible flow and laminar
flow in the boundary layer; although turbulent flow calcula-
tions have been carried out.

The basic methods which are employed in the paper are
the following: 1) a numerical solution of the potential flow
equations by a general method developed by Theodorsen and
Garrick,! and 2) finite difference solution*? of the boundary-
layer equations near the body surface up to the point of flow
separation. These two methods were combined info one
computer program which calculated the potential and
boundary-layer flow over the body in a matter of seconds on
the digital computer. The input for this program consisted
solely of the body coordinates, angle of attack or net circula-
tion, and the fluid properties. (For the purpose of illustration
the calculation technique was applied to the flow over a NACA
0012 airfoil section.)

One of the main reasons for writing this Note is to point
out the power of the digital computer in solving these types of
difficult flow problems. As will be shown in the following,
the methods used are more exact and less time consuming than
all of the approximate techniques still employed in design and
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